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There is no complete solution for the problem of abuse of statistics, but methodological training needs to cover
cognitive biases and other psychosocial factors affecting inferences. The present paper discusses 3 common cog-
nitive distortions: 1) dichotomania, the compulsion to perceive quantities as dichotomous even when dichotomiza-
tion is unnecessary and misleading, as in inferences based on whether a P value is “statistically significant”;
2) nullism, the tendency to privilege the hypothesis of no difference or no effect when there is no scientific basis for
doing so, as when testing only the null hypothesis; and 3) statistical reification, treating hypothetical data distribu-
tions and statistical models as if they reflect known physical laws rather than speculative assumptions for thought
experiments. As commonly misused, null-hypothesis significance testing combines these cognitive problems to
produce highly distorted interpretation and reporting of study results. Interval estimation has so far proven to be an
inadequate solution because it involves dichotomization, an avenue for nullism. Sensitivity and bias analyses have
been proposed to address reproducibility problems (Am J Epidemiol. 2017;186(6):646–647); these methods can
indeed address reification, but they can also introduce new distortions via misleading specifications for bias param-
eters. P values can be reframed to lessen distortions by presenting them without reference to a cutoff, providing
them for relevant alternatives to the null, and recognizing their dependence on all assumptions used in their compu-
tation; they nonetheless require rescaling for measuring evidence. I conclude that methodological development
and training should go beyond coverage of mechanistic biases (e.g., confounding, selection bias, measurement
error) to cover distortions of conclusions produced by statistical methods and psychosocial forces.

behavioral economics; bias analysis; cognitive bias; motivated reasoning; nullism; overconfidence; sensitivity
analysis; significance testing

Abbreviations: CI, confidence interval; NHST, null-hypothesis significance testing; PBA, probabilistic bias analysis; RR, relative
risk.

“[T]here is no shame in not knowing. The problem arises when
irrational thought and attendant behavior fill the vacuum left by
ignorance.”

—Neil deGrasse Tyson (1, p. 38)

METHODOLOGY, LIKE SCIENCE, IS HYPOTHETICAL

In an accompanying article, Dr. Timothy Lash (2) describes
how null-hypothesis significance testing (NHST) has contrib-
uted to problems of reproducibility, and discusses analytical
methods for better capturing uncertainties of inference. These

problems, however, are at least partly attributable to exclusive
focus on random error and mechanistic biases in statistics
while neglecting cognitive biases and other psychosocial fac-
tors affecting scientific inferences. Thus, in the present paper,
I detail 3 cognitive distortions that are aggravated or induced
by NHST: dichotomania, nullism, and reification.

To counter such cognitive problems of inference, the fol-
lowing methodological points need emphasis throughout teach-
ing and research in health, medical, and social sciences:

1. The processes generating our observations are far too
complex for us to capture all of their potentially important
features, and their complete form is mostly beyond correct
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intuitive understanding. Sophistication of a model does not
mitigatemisuse, however, for misuse becomesmore opaque
and tenaciously defensible when the model becomes harder
to understand. Thus, analytical methodology at best provides
frameworks for forcing some degree of logical consistency
into inferential arguments, and examples of how these argu-
ments can gowrong.

2. Methods do not come with real-world guarantees that they
“work” in our application (get us closer to the truth than if
we had ignored their outputs); theoretical “optimality” re-
sults are based on assumptions that are uncertain in reality.
We are thus foolish if we take their uncertainty assessments
(e.g., interval estimates) as sufficient for inference.

3. Inferences demand patient psychological as well as log-
ical analysis, for our intuitions influence our judgments
and in turn are heavily biased by our values, what we
were taught, and what we have taught—however wrong
those teachings are.

4. Statistical analyses are merely thought experiments, in-
forming us as to what would follow deductively under their
assumptions. These hypothetical experiments can train our
intuitions but can also bias our inferences via anchoring
(treating our primary analysis results as a specially up-
weighted reference point, even when there is no empirical
basis for that) (3) and reification (acting as if our models
are physical laws), as typifies rote statistical applications.
These problems contribute to overconfident inference. Mis-
interpretations of statistical tests and their confinement to
NHST are among the most prominent examples.

5. Anymodel that fits the data acceptably well will be only one
of many possible data-generating mechanisms that we can-
not rule out given our limited data and understanding. Sensi-
tivity and bias analysis can help address this fundamental
knowledge limitation but are in no way immune from cogni-
tive distortions. If anything, they offer even more opportu-
nities for misinterpretation and misuse, and may encourage
overconfidence by appearing comprehensive.

I have discussed most of these points elsewhere (4–6), so I
will focus on some specific problems raised by Lash’s articles
(2, 3) that seem neglected in most of the “replication crisis” lit-
erature, along with some limitations of sensitivity and bias
analysis in addressing these problems.

I argue that current training in statistics and analytical
methods is inadequate for addressing major sources of infer-
ence distortion, and that it should be expanded to cover the
biased perceptual and thinking processes (cognitive biases)
that plague research reports. As commonly misused, null-
hypothesis significance testing (NHST) combines several
cognitive problems to create highly distorted interpretations
of study results. Interval estimation has proven highly vul-
nerable to the same problems. Sensitivity and bias analyses
address model uncertainties by varying and relaxing assump-
tions, but (like Bayesian analyses) they are difficult to per-
form with proper accounting for prior information and are
easily manipulated because they depend on specification of
many models and parameters. Surprisingly, P values can be
reframed to lessen cognitive problems by 1) presenting them
without reference to a cutoff, 2) providing them for relevant

alternatives to the null hypothesis, and 3) interpreting them
with reference to all assumptions used in their computation
rather than just the parameter they are tailored to test. P val-
ues, however, are poorly scaled for measuring evidence, a
problem which could be addressed by transforming them
into the information they supply against the model used to
compute them.

THENHST PROBLEMARISES FROMASYNERGY
OFDICHOTOMANIA ANDNULLISM

In his article, Lash (2) gives a telling account of literature
distortions caused by NHST. After the publication of hun-
dreds of papers and books explaining NHST problems over
the past 75 years (e.g., see the citations in Greenland et al.
(7)), it is indeed disheartening that NHST and its variants
remain at the core of most analyses, apart from the relatively
few journals that discourage statistical tests.

Those journals have usually requested the use of confi-
dence intervals instead. Has forcing replacement of testing
with confidence intervals addressed the problems that arose
from NHST? As Lash explains (2), not as much as hoped.
That should be unsurprising, because both confidence inter-
vals and α-level tests were conceived as decision rules for be-
havior (8) but were rapidly misinterpreted as rules for belief,
and thus fed the false notion that a single study can by itself
tell us whether an effect is present or absent. They do so
by degrading continuous measures of evidence into decisive
conclusions, feeding the strong cognitive bias of dichotoma-
nia: the compulsion to replace quantities with dichotomies
(“black-and-white thinking”), even when such dichotomiza-
tion is unnecessary and misleading for inference.

As has long been known (9–11), use of the term “signifi-
cant” or dichotomization of P values by comparing them with
a fixed cutoff serves no good purpose for inference—it is less
misleading and more informative to say (for example) that an
association had a P value of 0.02 instead of “was significant”
or had a P value of 0.17 instead of “was not significant” (12).
Degrading P values and confidence intervals into null tests
blinds the user to actual data patterns (13), thus invalidating
conclusions and sometimes rendering them ludicrous. In a
sadly typical example, one research group claimed that their
study findings conflicted with earlier results because their
estimated risk ratio was 1.20 (95% confidence interval: 0.97,
1.48) as opposed to a previously reported risk ratio of 1.20
(95% confidence interval: 1.09, 1.33) (14). Such idiocies are
easy to find (15, Figure 3; 16; 17, p. 161; 18) and may be why
one journal banned the use of confidence intervals along with
statistical tests (19).

The distortion of focusing on the null value instead of the
entire confidence interval dovetails too well with pressures
to make results sound decisive. This null obsession is the most
destructive pseudoscientific gift that conventional statistics
(both frequentist and Bayesian) has given the modern world.
One of its many damaging manifestations is nullism (also
known as pseudo-skepticism): a religious faith that nature
graces us with null associations in most settings. This faith
should always be challenged within the applied context.
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Instead, it goes unnoticed in the vast majority of education
and practice—often to great harm.

Nullism appears to be a bias in science culture stemming
from ostensibly “skeptical” scientific attitudes, along with ratio-
nal desires to avoid false leads; it has been formalized in statisti-
cal tests designed to counter natural tendencies to see patterns in
noise. The bias is built directly into Bayesian hypothesis testing
in the form of spikes of prior probability placed on null hypothe-
ses. Yet in soft sciences these spikes rarely have any basis in
(and often conflict with) actual prior information (20–25).Medi-
cal research provides typical examples: Drugs and devices are
approved precisely because of evidence that they affect human
physiology, making the null hypothesis of no side effects less
likely than some alternatives (22).

In frequentist hypothesis testing, nullism manifests itself as
an implicit default assumption that false-positive inferences are
always far more costly than false-negative ones. This in turn leads
to adoption of test criteria that minimize false-positive rates no
matter how many true effects are missed, and retardation of the
process of scientific discovery (26). Neyman himself recognized
that nullism is an incorrect general view, noting that false nega-
tives could be more costly than false positives for some stake-
holders (27, pp. 104–108; 28). Consider adverse drug effects:
For the drug manufacturer, a false-negative inference can be
far less costly than a false-positive one. Standard study-design
criteria assume this cost difference with the requirement of a
5% maximum false-positive (type I error) rate and 80% mini-
mum power, corresponding to a 20% maximum false-negative
(type II error) rate and an implicit prior probability that adverse
effects are unlikely. Yet, for a patient receiving the drug, the
cost of a false-negative inference can be far higher (e.g., death
or disability) than the cost of a false-positive one (e.g., having
to use another drug). Thus, in hazard assessment, the tradi-
tional focus on testing only the null hypothesis is biased in favor
of those who would be found liable for harms. This null
bias is increased dramatically by multiple-comparison adjust-
ments, which preserve false-positive rates at the expense of
inflated false-negative rates, without regard to error costs
or prior probabilities.

Some null-biased procedures (such as shrinkage methods) do
have justifications in certain contexts, such as model selection
and exploration; genomics provides examples with biological
arguments for expecting few nonnegligible effects, along with a
need to drastically reduce the number of associations pursued.
Elsewhere, however, nullism seems to reflect a basic human
aversion to admitting ignorance and uncertainty: Rather than
recognize and explain why available evidence is inconclu-
sive, experts freely declare that “the scientific method” treats
the null as true until it is proven false, which is nothing more
than a fallacy favoring those who benefit from belief in the
null (29).Worse, this bias is often justified with wishful biolog-
ical arguments (e.g., that we miraculously evolved toxicologi-
cal defenses that can handle all modern chemical exposures)
and basic epistemic mistakes—notably, thinking that parsi-
mony is a property of nature when it is instead only an effective
learning heuristic (30), or that refutationism involves believing
hypotheses until they are falsified, when instead it involves
never asserting a hypothesis is true (31).

Interval estimation could have addressed these problems had
it been treated as its proponents advised: by careful examination

and discussion of the full range of the interval and its vicinity
to see what uncertainty would remain even if there were no
validity problems, rather than focusing on whether it contained
the null. Alas, this did not happen, and after generations of pleas
for the use of confidence intervals (9, 10, 32, 33), we still see
them being used to encourage dichotomous thinking (inside
the interval vs. outside), nullism (by examining only whether the
null value is within the interval), and overconfident inferences
(as their name encourages).

It seems unappreciated that P values can help address these
problems if they are computed for relevant nonnull hypotheses
(“alternatives”) aswell as the null. For example, it is often claimed
that a study provided evidence against an effect because the
null test was “nonsignificant”with high power; that claim is re-
vealed as wrong and deceptive when the test of an important
alternative is even less significant (34). This information is sup-
plied by a P value function (or confidence distribution) (15, 17,
33, 35), which provides P values for a full range of hypotheses
and confidence intervals for a full range of confidence levels—
thus addressing the criticism that null P values confound effect
size with statistical precision (36). The P value function, or at
least presentation of P values for effect sizes other than the
null, can thus rescue theP value concept from the abuses inher-
ent in NHST.

One-sided P values can further help mitigate nullism by shift-
ing the focus from a precise hypothesis (such as the null), which
is unlikely to be exactly true, to the hypothesis or probability
that the targeted parameter lies in a particular direction (23, 37).
Confidence intervals remain valuable, but only if they are inter-
preted to indicate the uncertainty or precision of the estimates
under themodel used to compute them (38, 39).

INTERPRETATIONSOF PVALUESANDCONFIDENCE
INTERVALS IN AWORLDOFBIAS

Even if we draw a P value function, there remains the prob-
lem of properly interpreting the P values it provides (7). This
problem is compounded when assumptions used in the analy-
sis have not been enforced by the design and conduct of the
study (40). For example, assumptions of “no unmeasured con-
founding” and “conditionally ignorable treatment assignment”
are operationally equivalent to claiming that our data were pro-
duced by some kind of intricately designed randomized experi-
ment, and thus (by definition) are not enforced and are often
doubtful in observational research (23, 41). And the usual
distributional assumptions of statistics can be severely violated
whenever analysis decisions are not captured in the analysis
model (40, 42).

Sensitivity to plausible assumption violations (model depen-
dence) is a major underappreciated weakness of all reasoning.
Even so-called “robust” statistical methods are sensitive to
assumption violations represented by uncontrolled biases.
These violations should be expected in human-subjects research
and render hypothetical any formal statistical inferences about
causation (6). Confronting this reality, one way to make sense
of conventional statistics is to reorient our interpretations to be
unconditional on model assumptions: Instead of thinking of a
P value or confidence interval as referring to a single parameter
(such as amodel coefficient), we can think of it as referring to the
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entiremodel it was computed from, including all assumptions
about bias (especially implicit assumptions) (7).

Traditionally, coefficient tests are taken to refer only to the
assumption that the coefficient equals the tested value, given all
the other model assumptions. This tradition is pernicious when-
ever (as is always the case in soft sciences) the other model
assumptions are far from guaranteed: All inferential statistics
(whether P values, confidence intervals, likelihood ratios, or
posterior probabilities) are heavily influenced by violations
of validity assumptions arising from uncontrolled nonlinearity,
confounding, measurement error, selection bias, P-hacking, or
fraud. Because almost all assumptions are uncertain, a small
P value only signals that there may be a problem with at least
1 assumption, without saying which one. Asymmetrically, a
large P value only means that this particular test did not detect
a problem—perhaps because there is none, or because the test
is insensitive to the problems, or because biases and random
errors largely canceled each other out. We recognize these
possibilities when we admit that results (whether with small or
large P values) may be “due to chance or bias.”

Uncertainty about validity assumptions is not captured by
standard testing descriptions—in fact, assumption uncertainty
is a core weakness of conventional statistics, which depends on
reification to connect its outputs to the real world. This weak-
ness can be addressed by recognizing that a P value does not
test only 1 hypothesis if the other assumptions are uncertain.
Rather, it is a test of every assumption used to compute the test
(24, p. 75). For example, a so-called null test is really a test of a
model comprising all assumptions used to compute the P value,
including validity assumptions as well as the null hypothesis.
This is so even if the test is tailored hypothetically to have “high
power” for the targeted parameter (i.e., derived to maximize
power to detect violations along the particular dimension speci-
fied by the null hypothesis).

P VALUESANDEVIDENCEMEASURES

Although Bayesians have raised important criticisms of sig-
nificance testing, they often overlook limitations of Bayesian
inference (43, 44) and sometimes claim that P values overstate
evidence against the null (45–47). That claim ismistaken inso-
far as it blames the P value for misinterpretations by teachers
and users of statistics; furthermore, it is based on a Bayesian
standard of evidence (the Bayes factor) which is of doubtful
validity for evaluating refutational measures like the frequen-
tistP value (20, 48).

A genuine cognitive problem is that a P value forces the
test statistic into the unit (0–1) scale, which renders it a
highly nonlinear and nonintuitive function of data informa-
tion. One way to address this problem is to treat a P value not
as an evidence measure but instead as merely an index of
compatibility between the test statistic and the model (set of
all assumptions) used to compute the P value, on a scale of 0
to 1, where 0 = completely incompatible (statistic impossi-
ble under the model) and 1 = completely compatible (statistic
exactly as predicted by the model) (7). The refutational strength
of a P value, however, can be gauged by translating it into the
bits of information it supplies against the model. For a P value
of p, this quantity is –log2(p), called the surprisal (49) in seeing

an event of probability p if the model is correct. This measure
is 0 (unsurprising) when P = 1, and it increases exponentially
as P declines. The number of bits of information against the
model supplied by P = 0.05 is then only −log2(0.05) = 4.3;
this is about as surprising as seeing 4 heads in 4 fair coin
tosses, which has a probability of 1/24 = 0.0625, thus con-
veying −log2(1/24) = 4 bits of information against fairness of
the tosses. For comparison, P = 0.01 and P = 0.09 translate
to −log2(0.01) = 6.6 and −log2(0.09) = 3.5. Thus, any evi-
dence overstatement lies not with the P value but with 0.05-
dichotomaniacs who mistakenly think that P = 0.05 represents
just enough evidence to reject the model, instead of recognizing
it as a small amount of evidence against the model.

BEYONDCONVENTIONAL STATISTICS: THE PERILOUS
QUEST FORREALISTIC ANDRELEVANTMETHODS

To place sensitivity and bias analyses in the generalized-
model framework described above, consider an adjusted rela-
tive risk (RR) parameter RRadj as estimated by the usual sort of
risk regression, propensity scoring, or some combination (such
as doubly robust regression). Conventional statistics only refer
to RRadj because that is all one can identify without introducing
external (“prior”) information about the function connecting it
to the targeted causal relative risk RRcausal. In methodology,
this profound knowledge gap is usually dealt with by saying
that the statistics refer to RRcausal conditional on the adjustments
being sufficient to remove bias. This treatment dodges the fact
that RRadj is actually a complex, unknown function of the target
effect RRcausal, the data, and various unknown bias parameters,
so that tests and estimates of RRadj omit major sources of uncer-
tainty about the effect RRcausal and by themselves place no limit
on its size.

Ideally, study-design features would identify the bias function
or even force RRadj to equal RRcausal, but nothing so ambitious
can be achieved in typical observational studies. Inferences
derived from statistical analysis may nonetheless appear com-
pelling simply because they are plausible in light of what is
known. This plausibility may lull one into forgetting that other
analyses may fit the same data equally well using plausible but
very different assumptions about the bias function, and thus
lead to very different inferences. In the philosophy of science,
this logical limit of knowledge is known as the underdetermina-
tion of scientific theories by observations (50), and it corre-
sponds to statistical nonidentification of the bias function
linking RRadj to RRcausal.

Statistics traditionally deals with this problem by forcing
identification of RRcausal using some conventional model with-
out worrying too much about whether the model is remotely
plausible, instead appealing to insensitive tests of fit. Bias analy-
sis tries to reintroduce plausibility by estimating the function
connecting RRadj to RRcausal from a combination of background
information (such as validation studies), arbitrary specifications
(such as distributional shapes and independencies), and what lit-
tle data information there may be on residual bias. The assump-
tions introduced are hopefully less absurd than claiming
RRadj = RRcausal, but there is no guarantee that this is so (e.g.,
as with absurd assumptions that bias parameters are uniformly
distributed or are independent between cases and controls).
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Even with realistic choices, the sensitivity of sensitivity and
bias analyses must be evaluated (51). The plausibility of an
estimated bias function is determined by intuitions, prejudices,
and understanding of the applied context; those can vary dra-
matically across researchers, in turn leading to very different
specifications and inferences even if they are anchored to the
same conventional analysis. Adding to this problem, sensitiv-
ity and bias analyses are more difficult to perform correctly and
more easily massaged toward preferred conclusions, because
they require specification of manymore equations and their pa-
rameters. And unlike NHST, abuse of sensitivity and bias analy-
sis is as yet barely studied because the pool of such analyses
remains small and highly selective. It thus seems implausible
that these analyses will increase replicability of inferences,
although they can reveal how assumptions affect those infer-
ences. (Here “replicability” is used according to recommenda-
tions of the American Statistical Association (52) to denote
independent checks of reported results with new data; “repro-
ducibility” then denotes checks of reported results using the
original data and computer code.)

As with Bayesian statistical methods, probabilistic bias anal-
ysis (PBA)—including Bayesian bias analysis as well as prob-
abilistic sensitivity analysis—is especially hazardous because
of poor defaults and intuitions regarding prior distributions for
parameters (53, pp. 369–372). One may thus doubt whether
individual studies should go so far as a full PBA (53, pp. 347
and 380). Among the objections (which also apply to other
sophisticated analysis methods):

1. No inference should be based on a single study alone, even
if that study was designed to be the final input into a policy
decision. Research synthesis is needed to reach reliable in-
ferences, and that requires detailed methods and data descrip-
tions for each study. It would thus be damaging if publications
omitted such details in favor of PBA, which itself requires
lengthy description.

2. Like any analysis, PBA is simply a thought experiment
predicated on assumptions that may be in error, with out-
puts highly sensitive to those assumptions. But the sophisti-
cation of PBAmay seduce users into making overconfident
claims about the analysis results, and may increase anchor-
ing of subsequent judgments to those results.

3. Researchers and referees have demonstrated severe problems
in using basic ideas like P values and confidence intervals
correctly. Should we expect fewer problemswith sensitivity
and bias analyses? Especially, PBA is an order of magni-
tudemore subtle and complex, requiring integration of mul-
tiple uncertainty sources and models. Complex models
increase the potential for oversights and hidden errors.

4. The unlimited sensitivity of effect estimates from bias
models implies that any desired inference can be manu-
factured by back-calculating to the plausible-looking mod-
els and priors that produce it, thus providing an avenue for
motivated statistical reasoning (54). Analysts can completely
deceive readers (and themselves) by failing to report result-
driven analysis selection.

A narrower concern is the relatively untested nature of PBA soft-
ware. As an example, a bug in one meta-analytical PBA (55)
was only discovered years later when a colleague attempted to

reproduce the results using other software (Dr. Timothy Mak,
University of Hong Kong, personal communication, 2010);
fortunately, the correction did not alter the main inference
that the studies being combined failed to establish anything
(thus illustrating a major robustness advantage of ambiguous
conclusions).

None of the above argues against the potential value of well-
done, transparent PBA for research synthesis to inform decisions
and policy. In fact, one can demand PBA in support of contest-
able claims about policy implications (53, pp. 347 and 380). But
warnings against policy claims within single studies (56) extend
to PBA: Like policy analysis, PBA remains a highly technical
topic in its own right, demanding well-developed methods
such as posterior sampling alongside as-yet-underdeveloped
methods such as prior modeling (by which I do notmean prior
elicitation, but rather extraction and coding of relevant infor-
mation from other studies). Thus, as with policy analysis, the
effort and detailed reporting needed for good PBA requires
its own article, which may be hard to justify when conventional
methods yield ambiguous results.

CONCLUSIONS

Viewing the distortions generated by conventional statistical
teaching and practice, I see a dire need to get away from infer-
ential statistics and hew more closely to descriptions of study
procedures, data collection (which may have occurred before
the study), and the resulting data. This recommendation runs
against ambitions and pressures on authors to expound on the
implications of their own studies, however biased and naive
their exposition. But what science and society need most from
a study is its data (or numerical summaries that allow adequate
reconstruction of the data) and thorough documentation of
how those data were generated, so that sources of uncertainty
can be recognized and the study information can be accu-
rately entered into research syntheses (57).

Instead, conventional statistical training seems to encourage
human tendencies toward overconfidence and conclusiveness
by providing numerically precise answers to hypothetical ex-
periments and decision problems. The artificial problems that
conventional statistics solves are often far removed from the
actual research contexts in soft sciences like health and medi-
cine. NHST is value-biased as well, with implicit loss functions
that would be unacceptable to many stakeholders—if they were
revealed (5, 8, 26–28). Decades of piecemeal objections to the
resulting abuses have reduced distortions in epidemiology, but
the core problems remain common in the broader literature.

I am thus unable to escape the inference that training in sta-
tistics and analytical methods has shown itself deficient in ad-
dressing major sources of inference distortion.We can begin to
address this deficiency by adding overviews of the now-vast
literature on cognitive biases and debiasing techniques (58–61)
to basic statistics and methods courses (for 2 decades, I used a
text by Gilovich (62), a $10 paperback, in my course on logic,
causation, and probability; a Web search on “cognitive biases”
will reveal many up-to-date nontechnical treatments of the
topic (63–66)). We also need to investigate how cognitive
biases have affected research literature. Methodologists
should formulate these teaching and research programs
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collaboratively with experts in cognitive sciences, social psy-
chology, and behavioral economics, paying special attention
to biases in methodology as well as in reported inferences.
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