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I congratulate Carlin and Moreno-Betancur [1] on their excellent
call for reform. I would like to expand on their call with the fol-
lowing recommendations for improvements in the teaching and
practice of regression analysis:

1. Regression analysis and modeling should begin as part of
data description. In that role, fundamental concepts such
as model forms, curve fitting, residuals, and influence can
be introduced as data summaries, before the more abstract
concepts of probability and inference.

2. Conventional regression analysis provides inferences about
the data generator, not the assumed target population. We
thus need to stop the implicit, automatic equating of the
data generator and the target population by using descrip-
tions and notation that makes the distinction explicit.

3. Models are not right or wrong, but are inevitably limited in
what they can capture and where they are useful. Thus, to
guard against misleading the users, model predictions need
to be evaluated against contextual information, model resid-
uals, and the data to see what they captured and what they
obscured or missed entirely.

4. To minimize bias from model misspecification, models
need to be flexible but not overparameterized. In partic-
ular, unnecessary categorizations of quantitative variables
should be replaced with simple smooth curves between the
extremes of straight lines and cubic splines.

5. Even if the analysis goal is only description of a target popu-
lation (as in a survey), our analyses need to reflect the causal
mechanisms that generated the data.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

© 2025 John Wiley & Sons Ltd.

6. The usual potential-outcome notations for distinguishing
regression models from causal models are elegant for the
math and confusing for students. Thus, for teaching, more
explicit notation is advisable.

7. Sample-size requirements need far more attention than
provided by considerations of precision, power, or positiv-
ity. At a minimum, when using common default (Wald)
large-sample methods we should check for potential break-
down of their approximations.

These recommendations are neither exhaustive nor new; the
third especially has a vast historical literature behind it (e.g.,
[2–4]). Nonetheless, my impression is that all the above points
need more coverage in teaching and more deployment in
practice.

1 | “Descriptive Regression” Can Refer
to Several Different Uses of Modeling

Paralleling the classification of research purposes in Carlin and
Moreno-Betancur [1], regression analyses are often classified into
“descriptive,” “predictive,” and “causal.” Unfortunately, the most
basic descriptive uses of regression seem neglected in teaching
and practice, even though they can serve as a foundation for
understanding the meaning and limitations of regression in data
analysis. To do so we need to subclassify descriptive regression
further; when that is done, descriptive uses of regression can be
seen as a prerequisite to predictive and causal uses. More radi-
cally, descriptive uses can be seen as subsuming predictive uses,
and predictive uses can be seen as subsuming causal uses.
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Specifically, the term “descriptive regression” may refer to the
following different concepts and goals, of which only the third
seems to be emphasized in typical statistics discussions:

1. Description of select data features. This goal involves no
inference, only degrees of detail and neglect in describing
data features and their fuzziness. Explication of this goal can
be found in the engineering and computer-science literature
in which models are used in data-compression algorithms.
This non-inferential version of description can illustrate
many general points of regression without the subtleties of
probability theory, including the geometry of least-squares
fitting and its consequences. A simple teaching example
of a U-shaped (e.g., parabolic) regression can show how
a linear-regression coefficient represents an average differ-
ence in outcome per unit change in a regressor; it thus can
summarize monotonic trends in data, but also can mask
important data patterns when changes cancel each other
out across the range of the regressor. The more general les-
son is that a parametric regression can only display the pat-
terns allowed by its model form, and that graphs from non-
parametric regression have a role in data summarization.

2. Inferred description of the behavior of the data-generating
process (DGP). This goal could be described as predicting
what the data generator will produce next, without regard to
how far the prediction may be from a corresponding target
population. An example would be predicting the patterns
a survey (the data generator) will produce in the face of
low response rates and the errors in the survey measure-
ments, as opposed to predicting the actual distributions in
the surveyed population. The data generator thus incorpo-
rates without distinction all influences on the final data,
such as selection bias and measurement errors—and it is
the only object directly addressed by conventional interval
estimates, p values, and other “superpopulation” inferences.

3. Inferred description of a target population. This goal can be
described as predicting a specified target-population quan-
tity from a sample, or as filtering out known sources of error
(bias and noise) to decode sample information about the
target population. This target population may be current,
as in disease surveys (which have a descriptive purpose);
or it may be a future population, as in epidemic forecasts
(which have a predictive purpose); or it may include poten-
tial outcomes, as in causal modeling (which predicts out-
comes under alternative actions [5]).

Most teaching of regression pretends as if inferential statis-
tics apply directly to the target population. Unfortunately,
this pretense is based on very strong and often implausible set of
assumptions, typically that data generation (item 2) involved only
probability sampling of known structure from the target (e.g.,
random conditional on a design matrix), with measurements of
variables that are error-free or with known error structures, and
with parameters that are homogeneous (constant) across what
are clearly very different person, times, and places.

I thus argue that, in teaching and practice, regression analysis
would best begin with description of the data (item 1), and
then move to description of generator behavior (item 2) before

claiming to provide a description of a target-population (item
3). This advice applies not only to observational studies, but
also to randomized clinical trials due to their extreme selectivity
in trial recruitment, treatment adherence, and retention. The
key advantage conferred by treatment randomization is that it
eases identification of treatment effects within the trial. Those
within-trial effects are part of the data generator (item 2), and
typically very far from effects in actual medical practice (item 3).
Estimation of the latter effects requires methodology and data
well beyond what is covered in most regression textbooks; for that
we must turn to modern literature on transportability (e.g., [6, 7]).

In survey sampling, the sampler attempts to impose known selec-
tion probabilities over a sampling frame that covers the entire
population. If however there is non-negligible post-sampling
nonresponse, loss, or missing data, the selection probabilities are
not identified by the data. The literature on dealing with such
problems is too vast and sophisticated to cover in basic courses,
but I believe that the core distinction between data-generating
and target distributions should be spelled out early and clearly,
with emphasis on the facts that (a) the only data we observe come
from the generator, yet (b) conventional statistics (as seen in the
vast majority of medical research articles) pretends as if the data
come straight from the target, or at least that selection varies in a
way that leads to no distortion of targeted parameters.

1.1 | Describing the Data With Fitted Models

The use of regression models for data description is apparent in
the works of Mosteller, Tukey, and others in the 1950s–1970s
(e.g., [8]). In this descriptive role, parametric model forms are
seen as filters that pass along information that follows the form,
and filter out information which does not so conform; the goal is
to save only data patterns that fall within the model form. A fitted
model is then a data summary that may be more or less adequate
for the purpose at hand, and can be viewed as a type of very lossy
data compression.

If the application requires extracting particular patterns from the
data, a model form will be adequate to the extent it allows through
those patterns. For example, linear regression extracts and sum-
marizes linear components of data patterns and filters out the rest
as residuals; it will be an adequate description if only linear com-
ponents are needed, and inadequate to the extent higher-order
components are needed. Thus, model adequacy is a contextual,
application-specific property rather than an absolute property of
a model relative to some reality [4].

More abstractly, a regression model provides a data summary
or compression based on projecting the data onto the subspace
of expected data sets following the model form [9, 10]. The
model extracts specific data features for which it is tuned or
sensitive to—namely, the features that can be reproduced by
model—while the residuals display features that the model fil-
ters out. If, as usual, the model has not been pre-specified based
on which patterns are contextually important and which are not,
its summarization adequacy can be examined directly by seeing
if clear patterns were left behind in the residuals, and if the pat-
terns the model captures are general or instead driven by a few
influential data records.
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1.2 | Describing the Data Generator With Fitted
Models

The task of data description can be translated into a parallel task
of describing the behavior of the data generator. Doing so, the
model is a filter that will capture features of the data genera-
tor for which it is tuned or allows in as a signal, and will filter
out the rest as residual. Residuals now display what the model
is missing about the generator, and p values for model fit based
on these residuals provide one index (of many) for evaluating the
adequacy of the data-generating model in light of the data [4, 10].

The difference between data and generator description is that
generator description involves uncertainty: We usually observe
just one data set from the generator, and can see directly how
close fitted values are to observed values. If however there are
unobserved sources of variation in the generator, we must invoke
assumptions about the distribution of residuals to infer behavior
of the generator. For example, assuming a parametric regression
model with independent identically distributed residuals allows
each observation to be treated as a replicate observation from the
generator, with an estimable systematic offset that follows the
model form. The results can capture patterns in generator output
even when the model form does not correctly capture generator
behavior (i.e., is misspecified) [11]; again, residual analysis [12]
can aid in detection of assumption violations and what the model
missed.

1.3 | Describing the Target Population With
Fitted Models

Description of the data or its generator is not the goal of most
studies, and so descriptive regression is usually framed only as
a tool for inference about target-population features, that is, for
describing the target population which fed the generator. As men-
tioned under item 3, the convention is to use very strong and often
questionable assumptions that equate patterns or parameters in
the data generator with patterns or parameters in the target. That
is, the data distribution produced by the actual data-generating
process is treated as the one that would be produced by perfect
random sampling of the target population.

In this fashion, inferences about the data generator become
identical to and thus confused with inferences about the target
population. Most statistical textbooks and presentations make
this identification automatically, with some narrative asides in
the discussion about possible discrepancies. Yet the assumptions
needed for the identification are uncertain and often implausible,
which makes conventional statistical inferences at best overcon-
fident if not misleading. In particular, parameter estimates, p
values and other inferential outputs from regression methods
take no account of gaps between the data-generating distribution
and the distribution of the target population, and thus understate
warranted total uncertainty about the target.

1.4 | Nonparametric Regression and Related
Methods

Nonparametric regression and machine learning (algorithmic
modeling) do not pre-specify data or generator structure, apart

from what may be unobjectionable constraints (e.g., smooth-
ness); they can thus adapt to the data in fine detail, leaving
unpatterned residuals [13]. The resulting data reduction is a
complex response surface, and intelligible presentation requires
graphs of fitted outcomes plotted against covariates, rather than
a table of transformed coefficient estimates. Addition of uncer-
tainty bounds to these graphs apply to data-generator behavior,
but the sample size required for the validity of these bounds is
beyond that of most health and medical studies. Finally, inter-
preting those bounds as applying to the target population requires
the same strong assumption as in the parametric case, that is,
equating the generator distribution to the distribution of samples
from the target population under a known sampling design.

The need for graphical presentation of nonparametric regressions
does not lend itself well to publication constraints. Hence in clin-
ical and epidemiologic reports nonparametric methods remain
mostly in intermediate roles, as seen in estimation of average
treatment (marginal) effects [14] or weight construction for para-
metric model fitting. Nonetheless, these methods deserve to be
integrated into basic regression education, and may even displace
much of traditional methodology for data summarization.

2 | Models Need to be Flexible but not Too
Flexible: Trend Models as a Case Study

Beyond the basic assumption that the data identify some features
of the target that we are after, parametric models add more
assumptions in the form of constraints imposed by the chosen
model, such as additivity and linearity on some scale. Where does
that model come from? As Box wrote [4], it should be derived from
contextual information, such as constraints imposed by the study
design and conduct, and assumptions uncontroversial in the con-
text (which usually includes uniform smoothness). Nonetheless,
most applications use off-the-shelf parametric models which
impose constraints well beyond contextual information (such
as additivity) and may even conflict with it (as monotonicity
often does). We thus should ask what fitted misspecified models
are telling us about the generator distribution. A large literature
on this topic emerged in the 1960s–1990s (e.g., [3, 4, 11, 15]).
Among the many recommendations there, general practice has
adopted “specification-robust” methods such as sandwich covari-
ances and bootstrapping of residuals [11, 12]; however, those
methods capture only uncertainties about the patterns allowed
by the fitted model, and do not account for inflexibilities of
the model.

For quantitative regressors such as age or drug dose, this
problem is partially addressed by using more than one model
term for the outcome trend across the regressor. This expansion
increases model flexibility and reduces estimation bias, at a
cost of increased estimation variance and attendant power loss.
Unfortunately, conventional analyses continue to use waste-
fully inefficient, biased, and unrealistic model expansions. One
example is breaking the regressor into categories determined by
covariate quantiles. At the other extreme, cubic splines involve
more terms than needed for optimal estimation; their popularity
is based on an extreme flexibility which is useful when complex
trends are expected (as in engineering) but which leads to over-
fitting in typical medical studies. Between these extremes are
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simple quadratic splines and fractional polynomials, which are
easy to fit, provide more realism and efficiency than categoriza-
tion, and avoid the overfitting inherent in typical cubic splines
[16, 17]. These models provide a much-needed compromise
between parsimony and flexibility, and thus deserve coverage in
teaching and use in real analyses.

A deeper problem is that the model used in presentations is
often the output of a preliminary selection algorithm, yet it is
used to create “statistical inferences” which assume that final
model was wholly pre-specified, leading to severe miscalibra-
tion of the results [9, 12, 18–20]. More sophisticated methods
either account for the preliminary model selection or average
results over model candidates [18, 19], which are in effect fit-
ting a more flexible model so that selection can be avoided.
These are useful technical advances for predicting generator
behavior, but still fail capture uncertainty about discrepan-
cies between the data-generator and target-population patterns,
which may show up as dramatic failures in clinical prediction
[17]. Uncertainties about those discrepancies are a central topic
in bias analysis [21, 22], which focuses on model expansion to
encompass distortions of target-population patterns by the data
generator.

3 | We Need Causal Thinking in the
Foundations, Teaching, and Practice of Statistics

The current causality literature focuses on forecasting what
would happen to a population or individual under different inter-
vention strategies. Nonetheless, paraphrasing Hill [23], no con-
textually sensible probability model can be constructed without
asking “what caused this data set rather than some other to
appear before us?” I thus use the term “data generator” for all
the causal processes (physical mechanisms) leading to the ana-
lyzed data set, and regard causal thinking as fundamental for all
applied probability and statistics [24].

In causal modeling, extrapolations are made from observed treat-
ment groups to counterfactual allocations, and thus model mis-
specification can be disastrous for health practices and medical
care. For example, almost all medication and nutrient effects
on health change direction across dosing, and thus present
a dose-optimization problem. But supplement overdoses often
occur due to naïve monotonic (“more is better”) extrapolation
from health benefits observed at lower doses, raising again the
need for models capable of capturing effect reversal.

To formally represent causal extrapolations, we need to expand
beyond ordinary regression models to potential-outcome mod-
els that forecast outcomes of each observational unit under
different interventions [25–27]. Conventional regression mod-
eling remains a useful component in fitting causal func-
tions, for example when fitting outcome regressions using
inverse probability-of-treatment weights (IPTW) obtained from
treatment-assignment regression to obtain “doubly robust” esti-
mates of causal effects [26]. But the target of these combined mod-
eling efforts are causal functions, which go beyond conventional
regression functions in complexity and interpretation. Thus, the
distinction between these functions is essential for teaching and
practice.

There are several ways to symbolically display the distinction
between regression and causal functions. This is usually done by
denoting the regressand (regression-function output) by Y , dis-
tinguishing the structural output (potential outcome) for inter-
vention X = x by Y x, Y (x), or Y x. These notations make the math
compact and facilitate a useful mapping between missing-data
and causal-modeling methods [26, 28]. Nonetheless, I have found
them problematic for teaching, for example, Y x gets confused
with Y , Y x gets confused with exponentiation, and both give the
incorrect impression that potential outcomes must have a joint
distribution or be deterministic [29].

Thus, for teaching I much prefer the more explicit notation in
which the probabilities for a discrete outcome variable Y when
treatment X is set to level x are denoted by Pr[Y = y | set(X = x)]
or Pr[Y = y | do(X = x)] [23, 25]. This notation shows the stochas-
tic potential outcome of treating the entire population with X = x,
regardless of actual X values, and represents treatment as an
observable function set(⋅) or do(⋅) rather than as selection among
hypothetical pre-existing variables. It should be contrasted to the
conditional probability function for regression, Pr[Y = y |X = x],
which shows the probability of Y = y in the subpopulation for
which X = x. The two concepts can be combined, for example,
Pr[Y = y | set(X = x), Z = z] provides the potential outcome of
applying the treatment X = x to the subpopulation for which
Z = z, and randomization of X stratified on Z is the primary basis
for the simplification

Pr[𝑌 = 𝑦 | set(𝑋 = 𝑥), 𝑍 = 𝑧] = Pr[𝑌 = 𝑦 |𝑋 = 𝑥,𝑍 = 𝑧]

which enables estimation of the causal effects of treatment X
using regression models [25–27].

Whatever notation is chosen, causal models provide a basis for
deriving and extending covariate adjustments, as well as for more
encompassing strategies such as target-trial emulation [26, 30] to
bring regression outputs closer to targeted causal effects.

4 | Sample-Size Requirements
for Large-Sample (Asymptotic) Methods

A purely technical problem is that few analyses or programs
check for approximation failures, even though their effects can
be profound [31, 32]. As a holdover from the computing limits of
the past century, most software will default to presenting Wald
statistics for a coefficient 𝛽, which combine a point estimate b
of 𝛽 with its estimated standard deviation (standard error) s to
form a Z-statistic b/s for the hypothesis that 𝛽 = 0 and a b± 1.96 s
95% interval estimate (which contains all values for 𝛽 that have
a two-sided Wald p> 0.05). Unfortunately, for common models
such as logistic regression, these statistics converge more slowly
to asymptotic behavior than do likelihood-ratio and score statis-
tics. Alternatives statistics based on likelihood ratios have long
been available in major software, but must be known to and cho-
sen by the user.

The current causal-inference literature tends to focus on “pos-
itivity” conditions (e.g., positive probability of receiving each
treatment being compared, or, more strongly, positive numbers
at each treatment level), but these conditions are far too weak to
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ensure sample-size adequacy for estimating effects of qualitative
treatments. Instead, adequacy requires at least multiple cases
and noncases at each treatment level; precise requirements
in multivariable applications will further depend on a host of
parameters that vary with setting.

In particular, there is no universal numeric rule analogous to the
classic “at least 5 observations expected per cell” for contingency
tables, which implicitly assume models loglinear in the expected
counts (e.g., logistic, Poisson, and proportional-hazards models):
Requirements vary dramatically with the form of the model fit,
with very slow convergence to asymptotic behavior for models
linear on a bounded scale (such as additive risk and rate models)
and for nonparametric regressions. I have thus suggested that,
at the very least, software should routinely compute and report
diagnostics that signal approximation breakdowns, for example
by providing the score or likelihood-ratio p values for the limits
of Wald intervals [33].

There have been many simulation studies and numeric examples
of approximation accuracy; most however assume that the fitted
model is correct and that the goal is estimation of a model coeffi-
cient or an average effect, for which model errors may cancel out.
But prediction of patient-specific effects are what clinical practi-
tioners most need for choosing treatments. Outside of regions of
highly influential data, individual predictions can be enormously
biased by model misspecification, and highly unstable [12, 17].
This aspect of the misspecification problem would favor more
flexible, highly parameterized models, or nonparametric regres-
sion and machine-learning algorithms to avoid rigid (and thus
likely erroneous) model specification [12]; again however they
require sample sizes well above that of most health and medi-
cal studies to reach their nominal large-sample behavior and to
provide stable individual predictions.

5 | Closing Cautions

The effort needed to absorb the regression extensions advised
above may tax students and researchers if their understanding
of math is weak. They may also tax mathematics and statistics
majors lacking experience with actual study operations (the real
data generators) and scientific controversies. Both types of stu-
dent present educational challenges that need to be met by nar-
rative and graphical explanations to illustrate abstract theory.

Unfortunately, statistical training has often fostered the misim-
pression that adopting theories of inference and understanding
their mathematical intricacies is sufficient for competent data
analysis. This “math delusion” has long been criticized for
leading to analyses based on implausible assumptions, to faulty
interpretations of statistical outputs, and for neglecting the
more basic judgments needed to employ mathematical results
in formulating scientific inferences [1–4, 15, 18–25, 34–39].
Teaching about this problem is aided by analyses of real, messy
data sets with full narrative description of the actual processes
that generated them, pointing out how those cannot be fully
described by tractable models.

Proper interpretation will be further aided by requiring the
purpose of modeling to be clearly defined before models are

specified and fitted [1], and by switching to more modest, accu-
rate terminology to describe program outputs, such as replacing
overconfident claims of “significance,” “power,” and “confi-
dence” with more modest observations of compatibility [10, 36,
38, 40]. Such exercises illustrate how all models are wrong in
detail, but some can be useful to a degree if their assumptions are
listed in full with verbal translation into the application context,
then checked against both background causal narratives and the
analysis data [2, 4, 12, 15, 24, 26, 28, 34].
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